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We study the ground-state properties of the two-dimensional spin-1/2 J1-J2 Heisenberg model on a square
lattice, within diagrammatic approximations using an auxiliary-fermion formulation with exact projection. In a
first approximation, we assume a phenomenological width of the pseudofermion spectral function to calculate
the magnetization, susceptibilities, and the spin-correlation length within random-phase approximation, dem-
onstrating the appearance of a paramagnetic phase between the Néel-ordered and Collinear-ordered phases, at
sufficiently large pseudofermion damping. Second we use a functional renormalization-group formulation. We
find that the conventional truncation scheme omitting three-particle and higher-order vertices is not sufficient.
We therefore include self-energy renormalizations in the single-scale propagator as recently proposed by
Katanin, to preserve Ward identities in a better way. We find Néel order at g=J2 /J1�gc1�0.4. . .0.45 and
Collinear order at g�gc2�0.66. . .0.68, which is in good agreement with results obtained by numerical
studies. In the intervening quantum paramagnetic phase, we find enhanced columnar dimer and plaquette
fluctuations of equal strength.
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I. INTRODUCTION

It has been known for a long time that quantum antifer-
romagnets, i.e., spin-1/2 systems coupled by Heisenberg ex-
change interaction, are strongly affected by quantum fluctua-
tions at low temperatures. Thermal fluctuations are important
as well, especially since they suppress long-range order
�LRO� in two dimensions at any finite temperature but their
role is relatively well understood. By contrast, quantum fluc-
tuations operate in a much more complex way: they may
suppress LRO but may at the same time lead to novel ground
states known under the labels “spin liquids, valence-bond
solids.” The first such state proposed in the literature is
Anderson’s RVB—�resonating-valence-bond�—state.1 In the
context of cuprate superconductors, viewed as hole-doped
Mott insulators, RVB states have been proposed by
Anderson2 to form the fundamental basis on which the
theory of high-Tc superconductivity should be built. Al-
though the idea has been considered by many authors since
then, there is no conclusive answer to the question of the role
of a spin-liquid state for high-temperature superconductivity.
These studies have raised the question, however, under
which conditions quantum fluctuations are strong enough to
destroy long-range order. In general, spin-liquid-type states
may be expected to be stabilized by any type of quantum
fluctuations. For spin systems, it has been proposed that frus-
tration either by competing spin interactions or due to special
geometric arrangements may lead to a spin-liquid state. In
particular, by tuning the interactions or the lattice anisotropy
a quantum phase transition from a state with long-range or-
der into a spin-liquid state may take place. Generally speak-
ing it has proven to be, may be unexpectedly, hard to destroy
long-range order by quantum fluctuations.

The simplest theoretical model of such a system is the
quantum Heisenberg antiferromagnet with nearest-neighbor
interaction for spins 1/2 on a two-dimensional square lattice.
Its ground state is known to be the Néel state with staggered

magnetization reduced by quantum fluctuations.3 At any fi-
nite temperature, the magnetic order is destroyed by thermal
fluctuations but the correlation length is found to increase
exponentially with decreasing temperature.4,5 This physics
has also been obtained from the quantum nonlinear sigma
model in the renormalized classical regime.6

A simple model with competing interactions is the J1-J2
model,7 featuring an additional antiferromagnetic next-
nearest-neighbor interaction J2 in addition to the nearest-
neighbor coupling J1. This model has attracted attention as a
simplified model8 for the effect of doping in the cuprate su-
perconductors when a small concentration of holes is doped
into the CuO planes, the long-range AF order of the undoped
system is rapidly destroyed,9,10 giving way to a nonmagnetic
“pseudogap” state and to superconductivity.

Recently, this model has also found use for certain vana-
date compounds,11,12 for which the magnetic interactions can
be modeled by the J1-J2 Hamiltonian of weakly coupled
planes.

Even more recently, the J1-J2 model has been invoked to
account for the weakened AF long-range order in the iron
pnictides.13–15 The universally observed linear temperature
dependence of the magnetic susceptibility of these com-
pounds has also been addressed in the framework of the
J1-J2 model.16

If the spins of the model are considered as classical
�S→��, there is an abrupt transition from Néel order to the
Collinear configuration for sufficiently strong frustration,
J2 /J1=1 /2. In mean-field approximation, a first-order transi-
tion from the Néel to the Collinear state is found. However,
this is changed by quantum fluctuations. Early on it has been
found7,17,18 that a nonmagnetic phase exists in the region
0.4�J1 /J2�0.65, between the two ordered states. The na-
ture of this intermediate state is what we would like to un-
ravel. Most recent mainly numerical work �see Refs. 19–21,
and references therein� on the J1-J2 model indicates that it
may be a valence-bond solid22 �VBS�, rather than a homoge-

PHYSICAL REVIEW B 81, 144410 �2010�

1098-0121/2010/81�14�/144410�17� ©2010 The American Physical Society144410-1

http://dx.doi.org/10.1103/PhysRevB.81.144410


neous spin liquid.23 In the VBS, the spins in the plane form
pairwise singlets, which are spontaneously dimerized in a,
e.g., columnar pattern and therefore break the lattice transla-
tional symmetry. It has also been proposed that the dimeriza-
tion takes place on units of 2�2 plaquettes.24 Evidence for a
VBS has also been found in studies25,26 of a model of
coupled spin chains,27 when the results are extrapolated to
the isotropic J1-J2 model in the plane. Concerning the nature
of the quantum phase transitions recent studies indicate that
the transition from the paramagnetic phase to the Collinear
configuration is of first order.19–21,28 On the other hand, the
properties of the transition from the Néel phase to the para-
magnetic phase are still highly controversial. Recent studies
point to either a first-order19,25 or a second-order
transition.28,29 The latter scenario gives rise to the question of
how two differently ordered phases may be connected by a
continuous phase transition.30

In this paper, we develop several analytical methods for
calculating the ground states and the excitation spectra of
spin models with competing interactions, such as the model
discussed above, on the basis of infinite resummations of
perturbation theory in the couplings J1 and J2. To this end,
we use a representation of the spin operators in terms of
pseudofermions.31 One motivation for using a fermionic rep-
resentation rather than a bosonic representation is the avail-
able experience in describing spin liquids or dimerized spin-
singlet states with fermions, mainly within large-N and
mean-field approaches �see, e.g., Refs. 32–35�. On the other
hand, pseudofermion representations have hardly been used
to study magnetic ordering phenomena.36 Although a large
body of results of numerical studies of these models is avail-
able, analytical approaches starting from a microscopic
Hamiltonian are rare. We use a newly developed implemen-
tation of the functional renormalization-group �FRG�
method37,38 applied to interacting quantum spin models. In
this we are aided by the experience, we have previously
gained with the nearest-neighbor Heisenberg model.39,40

Auxiliary particle representations of spin operators are some-
times viewed with suspicion, as they are conceived to be
fraught with uncontrolled approximations regarding the pro-
jection unto the physical sector of the Hilbert space neces-
sary in those spin representations. Here we are using an exact
method of projection onto the physical part of Hilbert space
that works even on the lattice �see below�.

The paper is organized as follows. Section II introduces
the model, the auxiliary-fermion representation and the pro-
jection schemes in detail. Simple mean-field approximations
are discussed in Sec. III where we demonstrate that these
approaches are not able to capture frustration effects but
rather reproduce classical results. To this end in Sec. IV, we
introduce a phenomenological pseudoparticle lifetime that
mimics quantum fluctuations. The results on the magnetiza-
tion, susceptibilities, and spatial spin correlations show that
in a certain parameter range for this lifetime, the correct
phase diagram is obtained. The main part of the paper, given
by Sec. V is devoted to FRG. This method enables us to
calculate the auxiliary-particle damping rather than treating it
as an input of the approximation. In Sec. V A, we first point
out that the often applied static FRG scheme does not lead to
a finite flow of the damping. Therefore in Sec. V B, in the

framework of the standard truncation of the FRG equations
we include the full dynamics. It turns out that within the
latter �one-loop� approximation the strength of quantum fluc-
tuations in the highly frustrated region is still underesti-
mated, and a regime without Néel order or Collinear order is
not found. We trace this deficiency of the one-loop approxi-
mation to the neglect of higher-order contributions. Another
way of saying this is that the Ward identities resulting from
spin conservation are badly violated in the one-loop scheme,
such that not even the random-phase approximation �RPA� is
reproduced in that approximation. As shown by Katanin37

the latter problem may be remedied by using a dressed
single-scale propagator, thus including three-particle correla-
tions with nonoverlapping loops. As shown in Sec. V C, us-
ing the Katanin truncation scheme we find a phase diagram
in excellent agreement with results from numerical methods.
In order to investigate the properties of the nonmagnetic
phase, correlation functions for columnar dimer and
plaquette order are calculated in Sec. V D. We find that cor-
relations for both kinds of dimerizations are clearly en-
hanced. Finally, the paper closes with a summary in Sec. VI.

It is worth mentioning that although in this first presenta-
tion of our work using the newly developed FRG method, we
concentrated on demonstrating that the method is capable of
giving results in agreement with results obtained mainly by
purely numerical means, it should be clear that the method
holds in fact considerable promise for future applications.
First of all, it allows to treat thermodynamic, in contrast to
finite-size systems. Second, it is ready to calculate dynamical
properties �at least on the imaginary frequency axis�. Third,
it is easily generalized to finite temperature �work in
progress�. Further, it allows, in principle, to address ques-
tions of critical behavior near a quantum critical point.

II. MODEL

The effects of frustration in quantum spin models have
been intensely studied in recent years. These models offer
the possibility to investigate quantum phase transitions41 be-
tween magnetically ordered and disordered phases. Espe-
cially in the context of deconfined criticality in two-
dimensional spin systems,30,42 quantum phase transitions are
the object of renewed interest. A standard model capturing
these phenomena is the spin-1/2 Heisenberg model on a
square lattice with an antiferromagnetic nearest-neighbor
coupling J1�0 and a frustrating next-nearest-neighbor cou-
pling J2�0, see Refs. 7, 17–24, 28, 29, and 43–51,

H = J1�
nn

Si · S j + J2�
nnn

Si · S j . �1�

As far as the ground state of the model is concerned, two
limiting cases are well understood. For J2=0, the system is
in a Néel-ordered phase with a magnetization of �60% of
the saturation magnetization. In the limit g=

J2

J1
→�, the

model reduces to two decoupled square lattices. Néel order
on each of these lattices gives rise to the so-called Collinear
long-range order with magnetic wave vectors Q= �� ,0� or
Q= �0,��. These two degenerate ground states correspond to
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a parallel alignment of the spins along the y axis and an
antiparallel alignment of neighboring spins along the x axis
in the first case and vice versa in the second case. Increasing
J2 in the first limit or J1 in the second limit leads in both
cases to frustration and to a decrease in the respective order
parameter, possibly all the way to zero. Indeed, the existence
of a nonmagnetic phase, indicated by numerical studies, ap-
proximately in the parameter region g�0.4. . .0.65 is widely
accepted.18,20,21,28,44,46 However, the nature of the magneti-
cally disordered phase as well as the order of the quantum
phase transitions is not known with certainty so far. Candi-
dates for this phase are a spin liquid7,48,49 and a VBS state.
For the latter, different types of order have been proposed,
e.g., columnar dimer19,28,46,51 and plaquette21,24,28,47 order.
Several studies give evidence that the transition from the
nonmagnetic phase to the Collinear phase is of first
order.19–21,28,46 We also mention that in the classical large
spin limit, no magnetically disordered phase exists. Instead
there is a direct first-order transition between the Néel phase
and the Collinear phase at g=1 /2. In this limit, the respec-
tive magnetizations reach the saturation value.

In the past, the model has been studied with a variety of
methods. Examples are: analytical approaches based on
field-theory methods22,29 or spin-wave theory;7,17 numerical
approaches such as exact diagonalization,18,23,44,47,50 coupled
cluster method,20,45 series-expansion methods,19,28,29,46,51 and
quantum Monte Carlo method.47,49

In this paper, we address the ground-state properties in a
rather different way. In order to allow for application of
Feynman-diagram techniques,52,53 we reformulate the prob-
lem in a fermionic language by introducing auxiliary
fermions.31,39,40 We represent the spin operators in terms of
auxiliary fermions f i�,

Si
	 =

1

2�
�


f i�
† ��


	 f i
. �2�

Here �	�	=x ,y ,z� are Pauli matrices, � ,
= ↑ ,↓ are spin
indices, and i is the site index. We use units with �=kB�1.
By construction, the representation �2� satisfies the correct
commutation relations. However, the Hilbert space for a
single site i is now spanned by four states, of which two,
representing an empty and a doubly occupied site are un-
physical. The projection to the physical sector of Hilbert
space is given by the auxiliary-particle constraint,

Qi = �
�

f i�
† f i� = 1. �3�

We present two different projection schemes to account for
this constraint.

A convenient approximate approach is to replace the con-
straint Qi=1 by its thermodynamic average, �Qi�=1. For a
translation invariant state, the latter conditions are identical
at each site, such that only a single condition remains. Since
the constraint amounts to removing two of the four states per
site, it is on average equivalent to half filling of the system,
which in case of particle-hole symmetry is effected by
applying a chemical potential 	=0 to the pseudofermion
system.

A different approach allowing for an exact treatment of
the constraint even for lattice systems has been proposed by
Popov and Fedotov.54 It amounts to applying a homoge-
neous, imaginary-valued chemical potential 	ppv=− i�T

2 ,
where T is the temperature. Thus, within this scheme, the
Hamiltonian H is replaced by

H → Hppv = H − 	ppv�
i

Qi. �4�

Note that H denotes the Hamiltonian �1� using the represen-
tation of spin operators in Eq. �2�. Given a physical operator
O �i.e., an arbitrary sum or product of spin operators� it can
be shown40 that the expectation value �O�ppv, calculated with
Hppv and the entire Hilbert space, is identical to the physical
expectation value �O�, where the average is performed with
the original Hamiltonian H. The projection works by virtue
of a mutual cancellation of the unphysical contributions of
the sectors Qi=0 and Qi=2, at each site. It should be empha-
sized that although the Hamiltonian Hppv is no longer Her-
mitian, the quantity �O�ppv comes out real valued. If on the
other hand, O is unphysical in the sense that it is nonzero in
the unphysical sector, e.g., the operator O=Qi, the expecta-
tion value �Qi�ppv is meaningless and one has �Qi�� �Qi�ppv.

This approach is applicable to spin models40,55,56 but un-
fortunately it cannot be extended to cases away from half
filling. Although 	ppv vanishes in the limit T→0, in prin-
ciple, the exact projection with 	=	ppv and the average pro-
jection with 	=0 are not equivalent at T=0. This is due to
the fact that the computation of an average �¯ �ppv does not
necessarily commute with the limit T→0. Nevertheless it
can be expected that in the model considered here both pro-
jection schemes are identical at T=0. This can be understood
with the following argument: starting from the physical
�true� ground state, a fluctuation of the pseudofermion num-
ber results in two sites with unphysical occupation numbers,
one with no and one with two fermions. Since these sites
carry spin zero the sector of the Hamiltonian with that occu-
pation is identical to the physical Hamiltonian where the two
sites are effectively missing. Thus, a fluctuation from the
ground state into this sector costs the binding energy of the
two sites which is of the order of the exchange coupling,
even in the case of strong frustration.19–21,24,46 Consequently,
at T=0 pseudofermion-number fluctuations are not allowed
and it is sufficient to use the simpler average projection with
	=0. In most calculations, we restrict ourself to this method.
However, we again emphasize that at T�0 both schemes
differ.

In the following, we will formulate approximations in
terms of resummed perturbation theory in the exchange cou-
plings J1 and J2. The basic building blocks are the four-
fermion interactions and the bare-fermion Green’s function
in real space,

Gij,�

0 �i� =

1

i + 	
�ij��
, 	 = −

i�T

2
or 	 = 0. �5�

= �2n+1��T are the fermionic Matsubara frequencies. Note
that in diagrammatic expansions, Green’s functions remain
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strictly local, i.e., Gij,�
=�ijGi,�
. The momentum depen-
dence in correlators such as the susceptibility is generated by
the nonlocal exchange couplings.

We begin the calculations with a simple mean-field ap-
proach. It should be stressed that in our model, a small pa-
rameter is absent. Accordingly, a controlled summation of
diagrams is a difficult task. For this reason, we extend the
mean-field approach and set up a phenomenological theory
which explores the consequences of certain assumptions on
the width of the auxiliary-fermion spectral function and
which gives qualitatively correct results.

Furthermore, the feasibility of diagrammatic approxima-
tions allows the application of the FRG method.57–60 This
scheme generates an exact, infinite hierarchy of coupled dif-
ferential equations for the one-particle irreducible m-particle
vertex functions by introducing an infrared cutoff. In order to
be able to solve these equations numerically, one truncates
the hierarchy of equations. The truncation is expected to give
good results for not too strong interaction. It will turn out
that the truncation procedure is a nontrivial problem for the
model considered here. Effectively FRG sums up infinite
classes of diagrams. This is a crucial property in the present
problem for which a small parameter does not exist.

So far, FRG has been applied to low-dimensional, inter-
acting fermion systems, e.g., the two-dimensional Hubbard
model,58,61 the single-impurity Anderson model,62 and the
Luttinger liquid with impurities63 but a pure spin model has
not been tackled with FRG.

III. MEAN-FIELD THEORY

The most elementary approximation for a spin model is
the mean-field theory. In our fermionic description, it corre-
sponds to the Hartree approximation shown in Fig. 1. The
closed loop of the renormalized propagator acts as the self-
consistent mean field.

Note that the Fock term is exactly zero since the nonlocal
exchange coupling connects two points of the same fermion
line. Dropping the requirement of exact projection, one may
allow for fermion hopping and make a mean-field ansatz
with nonlocal propagators. The corresponding symmetry-
broken phase is the so-called RVB �Ref. 2� or the flux
phase.32,64 We will not consider mean-field amplitudes vio-
lating the auxiliary-particle constraint in this paper.

By contrast, the magnetic order parameter �Si�
= 1

2��
�f i�
† ��
f i
� that appears in the Hartree approxima-

tion is a physical quantity. In the following calculation, we
also consider finite temperatures. Dyson’s equation in Fig. 1
reads

Ḡi�i� = 	�i + 	�1 − �̄i�i�
−1, �6�

where Ḡ, �̄, and 1 are matrices in spin space. The self-energy
is coupled back to the renormalized Green’s function by

�̄i�i� =
1

4�
j

Jij�
	=1

3

�	
1



�
i�

Tr	�	Ḡj�i��
ei��. �7�

The couplings are written in the form Jij, which is J1 if i , j
are nearest neighbors, and J2 if i , j are next-nearest neigh-
bors. The factor ei�, with an infinitesimal ��0, is needed
for the convergence of the Matsubara sum. If we assume
magnetism along the z direction, the self-energy has the
form

�̄i�i� = �zmi. �8�

To describe Néel and Collinear order, we split the lattice
up into two sublattices A and B. In case of Néel order, A and
B form a staggered pattern while for Collinear order, they
form rows �or equivalently columns�. Furthermore, we re-
quire

m � mi�A = − mi�B. �9�

Inserting Eq. �6� into Eq. �7� and using Eq. �8� one obtains

mi =
1

4�
j

Jij
1



�
i

�
�=�1

�

i + 	 − �mj
ei�. �10�

Using 1

�i

ei�

i−z = f�z� and f�z−	ppv�= 1
ie
z+1

�f is the Fermi
function�, one finds the following self-consistent equa-
tions for m for both types of order and both projection
schemes,

Néel order: m = ���J1 − J2�tanh�m

2 � for 	 = 0

�J1 − J2�tanh�m
� for 	 = 	ppv ,

�11a�

Collinear order: m = ��J2 tanh�m

2 � for 	 = 0

J2 tanh�m
� for 	 = 	ppv .

�11b�

The spin polarization or, in short, magnetization Mi is given
by

Mi = �Si
z� =

1

2

1



�
i

Tr	�zḠi�i�
ei�. �12�

From the comparison of Eqs. �7� and �12� and using
Mi�A=−Mi�B, one finds a relation between mi and Mi,

mi =
1

2�
j

JijMj = ��2Mi�J2 − J1� for Néel order

− 2MiJ2 for Collinear order
.

�13�

From Eqs. �11a� and �11b�, the critical temperatures Tc
Néel and

Tc
Col can be determined. The instability with the larger tran-

sition temperature controls the type of order at a given
g=

J2

J1
. This leads to

= +

FIG. 1. Diagrammatic representation of the Hartree approxima-
tion. The full line is the bare Green’s function G0, Eq. �5� and the
double-stroke line the self-consistent one. The dashed line repre-
sents the interaction J1 or J2 and the dots are Pauli matrices�1 /2.
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0� g�
1

2
: Tc = Tc

Néel = ��J1

2 �1 − g� for 	 = 0

J1�1 − g� for 	 = 	ppv ,

�14a�

g�
1

2
: Tc = Tc

Col = ��J1

2 g for 	 = 0

J1g for 	 = 	ppv . �14b�

Apparently, within this approximation, no nonmagnetic
phase is found at T=0. Instead there is a first-order transition
from Néel to Collinear order at g= 1

2 . The magnetization M
= Mi, which can be obtained from Eqs. �11a�, �11b�, and
�13�, reaches the saturation value M = 1

2 at T=0, and the clas-
sical large spin behavior is reproduced. These properties hold
for both projection schemes. However, this is no longer the
case for T�0. The contribution of unphysical states with S
=0 leads to a reduction in the magnetization in the average
projection scheme. Also the critical temperatures come out a
factor of two smaller in the average projection scheme. The
self-consistent equations for 	=	ppv are identical to those
obtained within the conventional mean-field theory in terms
of spin operators, confirming that the cancellation of the un-
physical states works correctly in this approximation.

In summary, the simple mean-field theory leads to a Néel
phase at g� 1

2 and a Collinear-ordered phase g� 1
2 but is not

sufficient to describe the effect of frustration in destroying
magnetic order in the regime g� 1

2 .

IV. FINITE PSEUDOFERMION LIFETIME

In the mean-field approximation, the effect of fermion
scattering in generating a finite lifetime is not taken into
account. We now briefly discuss a phenomenological frame-
work for the ground state, which introduces the lifetime � as
a phenomenological parameter. To this end, we model the
retarded Green’s function by

GR�� =
1

 + i�
, � = − i� with � =

1

�
. �15�

The spectral function ��� acquires a finite width �,

��� = −
1

�
Im GR�� =

�

�

1

2 + �2 . �16�

An analytic continuation of the self-energy � to the upper
complex half plane provides

��z� = − i� for Im z� 0. �17�

Since ��� is an even function, it follows immediately from
the spectral representation G�i�=�−�

� ����
i−�d� that G�z� and

��z� are odd functions with vanishing real parts along the
complex Matsubara axes. Thus, we obtain

G�i� =
1

i + i� sgn��
. �18�

To proceed, we need to specify the g dependence of the
damping parameter �. For J2=0, we put � in the form �
= �̃J1, where �̃ is a dimensionless parameter. A similar situ-

ation is encountered for J1→0 and J2�0, where the system
is split up into two square lattices, each only with nearest-
neighbor couplings J2. Therefore, in this limit, the relation
�= �̃ J2 holds. To interpolate between both limiting cases, we
assume

��J1,J2� = �̃J1
�1 + g2. �19�

A. Hartree approximation

Replacing the bare Green’s function by Eq. �18�, we now
calculate the ground-state magnetization within the Hartree
approximation of Sec. III. In the limit T→0, using 1


�i

→ 1
2��d, the new mean-field equation is given by

mi =
1

4�
j

Jij
1

2�
�

−�

�

d �
�=�1

�

i + i� sgn�� − �mj
. �20�

Here it is obvious that the two projection schemes are iden-
tical because a shift of the Matsubara frequencies by 	ppv=
− i�

2
 becomes irrelevant in the limit T→0, provided that the
Green’s function, or equivalently the fermion spectral func-
tion, is regular at =0. Equation �20� leads to the following
self-consistent equations for the Néel and Collinear magne-
tizations,

MNéel =
1

�
arctan�2MNéel�J1 − J2�

�
� , �21a�

MCol =
1

�
arctan�2MColJ2

�
� . �21b�

The solutions of these equations are shown in Fig. 2 for
different parameters �̃. The case �̃=0 represents the Hartree
approximation from Sec. III. An increase in �̃ reduces the
magnetizations, especially in the region of high frustration.
In particular, for small �̃, there is still a direct transition
between the two types of order at g= 1

2 while for sufficiently
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~

FIG. 2. �Color online� Magnetizations MNéel and MCol versus g
within the phenomenological theory for different damping param-
eters �̃.
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large �̃, a nonmagnetic phase emerges. It appears that a
broadening of the pseudofermion levels captures much of the
effect of frustration expected to reduce or destroy magnetic
order. In contrast to the simple mean-field theory, one now
finds second-order phase transitions and a mean-field critical
exponent 
= 1

2 of the magnetization. From the self-consistent
equations, a phase diagram in the �-g plane can be drawn,
see Fig. 3. It shows only a narrow parameter range for �
where the theory provides meaningful values for the phase
boundaries. For that reason, it will be difficult to determine
the damping parameter in approximative schemes. For ex-
ample, �̃=0.36 leads to transitions at gc1�0.39, gc2�0.69,
and also a realistic value for the magnetization at g=0, i.e.,
MNéel�0.35. This value of the width parameter �̃ will be
used in the following section to study the properties of the
nonmagnetic phase.

B. Random-phase approximation

In this section, we calculate the spin susceptibility in the
paramagnetic phase within RPA using the Green’s function
introduced in the last section. Figure 4 displays the approxi-
mation in diagrammatic form. Since the RPA scheme can be
obtained from the Hartree approximation by taking the de-
rivative with respect to the self-consistent field, the quantum
phase transitions are located at the same point in both ap-
proaches. The conserving approximation scheme in the sense
of Baym and Kadanoff65,66 is an essential aspect here be-
cause spin conservation is an important constraint on the
dynamics of the physical system; in addition the auxiliary-
particle constraint which allows only one particle per site
requires a conserved particle number. In the nonmagnetic
phase, the equations in Fig. 4 are translation invariant and
can be transformed into momentum space. The static suscep-
tibility ��p , i�=0� then has the form

��p,i� = 0� =
1

	��i� = 0�
−1 + J�p�
. �22�

Here J�p� is the Fourier transform of the interaction Jij
�Ji−j which is given by

J�p� = 2J1	cos�px� + cos�py�
 + 4J2 cos�px�cos�py� .

�23�

Inserting the propagator from Eq. �18� into a single bubble
��i�=0�, this quantity is found as

��i� = 0� ��zz�i� = 0� =

−
1

4

1

2�
� d� 1

i + i� sgn���
2

Tr	��z�2
 =
1

2��
.

�24�

The susceptibility in Eq. �22� together with Eqs. �19�, �23�,
and �24� is evaluated for p= �� ,�� and p= �� ,0�, the rel-
evant wave vectors in the case of Néel and Collinear orders,
respectively. The results are shown in Fig. 5. As expected for
continuous phase transitions, the susceptibility with wave
vector p= �� ,���p= �0,��� diverges in the limit gc→gc1+0
�gc→gc2−0�.

Finally, we discuss the static correlation function
��R , i�=0�, which is obtained by transforming the suscepti-
bility from Eq. �22� into real space,

��R,i� = 0� =
1

�2��2�
−�

�

dpx�
−�

�

dpy
eipR

	��i� = 0�
−1 + J�p�
.

�25�

Evaluating Eq. �25� numerically with �̃=0.36 for distances R
along the vertical or horizontal lattice direction, R	=Re	,
	=x ,y, leads to the behavior shown in Fig. 6. For g slightly
above the lower critical value gc1 �upper panel�, the signature
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FIG. 3. Phase diagram in the �-g plane. The dotted line shows
the g dependence of � according to Eq. �19� for �̃=0.36.
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FIG. 4. Self-consistent RPA equation for the susceptibility � in
diagrammatic representation. � denotes a single bubble.
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FIG. 5. �Color online� Static susceptibility for wave vectors
�� ,�� and �� ,0� and a damping parameter �̃=0.36. The dashed
lines visualize the phase boundaries.
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of the Néel phase is clearly seen. The correlation function
forms a staggered pattern and the envelopes for positive and
negative values only differ by a sign. At large enough dis-
tances R, the data points are well fitted by an exponential
decay while at small distances, the decrease is faster. Inside
the paramagnetic phase, the envelopes are no longer sym-
metric around ��R�=0. For g slightly below the upper criti-
cal point gc2 �lower panel�, the correlation function still ex-
hibits a staggered sign but the correlation between spins with
an odd distance seems to vanish on approaching the critical
point. Again, for large R, an exponential function can be
fitted and the correlation length is identical for even and odd
distances. The asymmetry of the two envelopes can be un-
derstood by the fact that for Collinear fluctuations, two de-
generate patterns exist, the alignment of spins along rows
and along columns. Thus, near the upper critical point corre-
lations are a superposition of both,

��R� = �− 1�Ra1e−R/� + a2e−R/� �26�

with �almost� identical weights a1=a2. Obviously this sup-
presses correlations for odd distances. Here � denotes the
correlation length. Away from the upper critical point Néel-
type fluctuations emerge and we have a1�a2. Eventually at
the lower critical point a2 vanishes.

The correlation length � is plotted in Fig. 7. The data
indicate divergences at the phase boundaries but get rather
small in the vicinity of g=0.4, i.e., down to ��1.5. Remark-
ably, the smallest values for the correlation length are not
reached at g=0.5 where one would classically expect the
strongest frustration.

The phenomenological theory presented suggests that a
broadening of the fermions’ spectral function controls the
phase diagram and the behavior of many physical quantities
such as the magnetization, the susceptibility, and the spatial
correlation function. However, a statement about the nature
of the paramagnetic phase �columnar dimer or plaquette or-

der� cannot be made. Also critical behavior beyond mean
field is not accessible. Qualitatively correct results are ob-
tained by tuning the width �̃. However, this phenomenologi-
cal parameter is not calculated within the theory and there is
no simple way to calculate it. Unfortunately, summing up
diagrammatic contributions of the Green’s function to gain
reasonable values for the width is a difficult task39,40 because
the results strongly depend on the choice of the diagrams.
For example, in the approximation of taking the self-energy
to second order, one gets a spectral function of the form

��� =
1

2
	�� − �� + �� + ��
 . �27�

Then in the whole parameter range g�0, the gap � turns out
to be so large that magnetic order is destroyed. On the other
hand, from a completely self-consistent calculation of the
second-order self-energy, one finds that the spectral function
is too narrow to allow for a paramagnetic phase.

Note that there is no justification for a perturbative treat-
ment in finite order. Instead diagram classes up to infinite
order have to be summed. To approach this problem in a
more systematic way, we will now use the FRG method.

V. FUNCTIONAL RENORMALIZATION-GROUP
METHOD

The FRG method allows to sum up infinite classes of
contributions in perturbation theory in a systematic way. So
far, this method has been used to describe the weak-coupling
regime, e.g., of the Hubbard or the Anderson model. Our
model does not have a small coupling constant since there is
no kinetic-energy term in a spin Hamiltonian. We nonethe-
less employ FRG in the usual way of neglecting higher order
�three-particle and higher-order� correlation functions. As it
turns out that this is not sufficient, we add higher-order cor-
relations in the form of self-energy corrections. Within FRG,
one starts with the high-energy sector, where Green’s func-
tions and coupling functions are known, and successively
adds lower-energy contributions. As a first step, we define
the cutoff procedure to be used by the following zero-
temperature bare Green’s function,
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FIG. 6. Static correlation function ��R , i�=0� for distances R
= R along a lattice direction. R is measured in units of a lattice
spacing. Again �̃=0.36 is used. In the upper panel, g is slightly
above the critical point gc1 and in the lower panel slightly below
gc2.
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G0��i� =�� − ��G0�i� =
�� − ��

i + 	
. �28�

In this cutoff-dependent propagator, all modes with ��
are projected out. For the rest of the paper, we apply the
average auxiliary-fermion projection scheme with 	=0, as it
is exact at zero temperature. However, it is not too difficult to
implement the exact projection scheme,54 which increases
the numerical effort by roughly a factor of 8. In the one-
particle irreducible �1PI� version of FRG �Refs. 57–60� em-
ployed here, G0��i� is inserted into the generating func-
tional of the 1PI vertex functions52in place of G0�i�. Taking
the derivative with respect to �, an exact, infinite hierarchy
of coupled differential equations for the vertex functions is
obtained. To be more precise, the flow of the one-particle
vertex, the self-energy �, depends on � and the two-particle
vertex �. In turn, the flow of � depends on �, �, and the
three-particle vertex �3, and so on. At the end of the flow at
�=0 when the theory is cutoff free, the exact vertex func-
tions are obtained.59,60 However, in explicit calculations one
can only deal with a finite set of equations and hence a trun-
cation scheme has to be applied. Usually, by applying a
weak-coupling approximation, the three-particle vertex �3
and higher vertices are neglected, resulting in a closed set of
equations for � and �. This scheme will be applied in Secs.
V A and V B while in Secs. V C and V D, we make use of an
improved truncation scheme,37 which takes into account con-
tributions of the three-particle type. For the conventional
truncation scheme, the equations for the self-energy � and
the two-particle vertex � are depicted in Fig. 8. In explicit
form, these equations read

d

d�
���1� = −

1

2��
2
���1,2;1,2�S��2� , �29�

d

d�
���1�,2�;1,2� =

1

2��
3,4

	���1�,2�;3,4����3,4;1,2�

− ���1�,4;1,3����3,2�;4,2� − �3 ↔ 4�

+ ���2�,4;1,3����3,1�;4,2� + �3 ↔ 4�


�G��3�S��4� . �30�

Here the numbers are shorthand notations for the frequency,
the site index, and the spin index, that is, 1= �1 , i1 ,�1�, and

�1 stands for an integral over 1 and sums over i1 and �1.
The full propagator G��i� reads

G��i� =
�� − ��
i − ���i�

�31�

and the so-called single-scale propagator is defined by

S��i� = 	G��i�
2 d

d�
	G0��i�
−1 =

�� − ��
i − ���i�

.

�32�

For the last expression in this equation, a relationship67 for
the product of � functions and � functions has been used.
Note that G� and S� are local and translation invariant in real
space and proportional to the unit matrix in spin space. Thus,
the propagators in Fig. 8 and Eqs. �29� and �30� carry only
one composite index.

Next we specify the initial conditions for the flow equa-
tions at �=�. In this limit, the free propagator vanishes
identically. Thus, only one-particle potentials for the self-
energy and bare interactions for the two-particle vertex re-
main. In the following, we confine ourselves to the nonmag-
netic phase. We defer consideration of the flow of the
magnetic order parameter to later work. Accordingly the free
Green’s function 	Eq. �28�
 does not contain a one-particle
field m that breaks rotational symmetry as in Eqs. �6� and �8�.
Note that although within this scheme, the magnetic phases
are not accessible, magnetic instabilities may be detected as
divergences in the susceptibilities. We have a vanishing self-
energy for �=�,

��=��i� � 0. �33�

In this limit, the two-particle vertex is given by the bare
interactions in antisymmetrized form,

��=��1�,2�;1,2� = Ji1i2

1

2
��1��1

	 1

2
��2��2

	 �i1�i1
�i2�i2

− Ji1i2

1

2
��1��2

	 1

2
��2��1

	 �i1�i2
�i2�i1

. �34�

Here the factors 1
2��


	 originate from the bare vertices and
the Kronecker � ensures that there is no fermion hopping on
the lattice. Since the rotational invariance of the initial con-
ditions is conserved during the flow, the two-particle vertex
at finite � is parametrized by spin-interaction terms  ��


	 ���
	

and density-interaction terms  ��
���. Since the propagators
are local, the site index of an ingoing leg has to be identical
to the site index of the corresponding outgoing leg, which
results in a total dependence on only two sites, i.e., i1 and i2.
To be more precise, translation invariance further reduces the
site dependence only to the separation i1− i2. Taking into
account the antisymmetry in all variables, the two-particle
vertex can now be represented as

d

dΛ � � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

1’1 = −

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

11

2

d

dΛ � � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �2 2’

1 1’
=

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
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� � �
� � �2
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FIG. 8. FRG equations for the self-energy and for the two-
particle vertex. The line with an arrow is the full Green’s function
G��i� 	see Eq. �31�
 and the line with an arrow and a slash is the
single-scale propagator S��i� 	see Eq. �32�
.
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���1�,2�;1,2� = 	�s i1i2
� �1�,2�;1,2���1��1

	 ��2��2

	 + �d i1i2
� �1�,2�;1,2���1��1

��2��2

�i1�i1

�i2�i2

− 	�s i1i2
� �1�,2�;2,1���1��2

	 ��2��1

	 + �d i1i2
� �1�,2�;2,1���1��2

��2��1

�i1�i2

�i2�i1
. �35�

The indices s/d correspond to spin and density interactions.
Note that energy conservation is implied, i.e., 1�+2�=1
+2. As another consequence of rotational invariance, the
self-energy is an odd function in the frequency, as already
pointed out after Eq. �17�. In analogy to Eq. �17�, we write

���i� = − i���� . �36�

Inserting Eqs. �31�, �32�, �35�, and �36� into Eqs. �29� and
�30�, the flow equations for �, �s, and �d can be calculated.

A. Static FRG

Before considering the general case with all frequency
dependencies, in this section we briefly discuss a static
approximation.63,68 Putting all frequency arguments of the
self-energy and vertex functions equal to zero leads, how-
ever, to a trivial solution since in that case, the self-energy
will be identically zero, provided it is assumed to be a con-
tinuous function of frequency. Therefore, in order to allow
for a broadening of the spectrum we again assume the dis-
continuous form ��=−i�� sgn��. However, inserting this
form together with the static two-particle vertex into the first
flow Eq. �29� leads to a vanishing flow for �� due to the
integration over an odd function on the right side. Obviously
a static approximation can only be applied to the two-particle
vertex, and �� has to be considered again as a phenomeno-
logical parameter that is independent of �. Using the static
version of Eq. �35�, i.e.,

���1�,2�;1,2�

= 	�s i1i2
� ��1��1

	 ��2��2

	 + �d i1i2
� ��1��1

��2��2

�i1�i1

�i2�i2

− 	�s i1i2
� ��1��2

	 ��2��1

	 + �d i1i2
� ��1��2

��2��1

�i1�i2

�i2�i1

�37�

and the phenomenological assumption ��i�=−i� sgn��,
one obtains

d

d�
�s i1i2
� =

2

�

1

�� + ��2��
j

�s i1j
� �s ji2

� − 2��s i1i2
� �2

+ �s i1i2
� ��s i1i1

� − �d i1i1
� �� , �38a�

d

d�
�d i1i2
� =

2

�

1

�� + ��2��
j

�d i1j
� �d ji2

�

− �d i1i2
� �3�s i1i1

� + �d i1i1
� �� . �38b�

Note that the frequency dependence of � only affects the
internal integration. By comparing Eqs. �34� and �37�, the

initial conditions for �s and �d can be read off,

�s i1i2
�=� =

1

4
Ji1i2

, �39a�

�d i1i2
�=� = 0. �39b�

Solving Eq. �38b� with the initial condition �39b� gives
�d i1i2
� �0. A finite set of equations for �s i1i2

� is obtained by
neglecting all vertices with the distance i1− i2 exceeding a
certain cutoff value. The resulting equations are solved nu-
merically. A flow toward finite values for �→0 indicates a
paramagnetic phase while a diverging flow is a sign of a
magnetic instability. The type of order can be extracted by
transforming �s i1i2

� into Fourier space and identifying the
fastest momentum component. As a result, one can draw a
phase diagram in the �-g plane, see Fig. 9. The figure com-
pares the phase boundaries with the results from the phenom-
enological theory in Sec. IV. Again the boundaries are given
by straight lines but the value of the frustration parameter for
which the paramagnetic phase has its largest extent moved
from g=0.5 to g�0.62. Interestingly, the phase diagram
from Sec. IV can be reproduced within FRG. Consider the
flow equation depicted in Fig. 10. It only contains the second
and third term of the right side of the equation in Fig. 8.
Furthermore, it specifies how the ingoing and the outgoing
lines are connected. An examination of the terms in Fig. 8
reveals that the contributions in Fig. 10 are the only ones that
couple two-particle vertices with different spatial separations
of the outer legs among each other. This is due to the internal
fermion bubbles in Fig. 10 which can be located on an arbi-
trary site. For the other terms, the vertex on the left side of
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FIG. 9. Phase diagram in the �-g plane for a static FRG approxi-
mation including a phenomenological parameter � �full line�. The
dotted line shows the phase boundaries of the phenomenological
theory from Fig. 3.
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the flow equation is coupled only to itself or to the local
vertex. The explicit equation corresponding to Fig. 10 reads

d

d�
�s i1i2
� =

2

�

1

�� + ��2�
j

�s i1j
� �s ji2

� , �40�

again with a phenomenological �. It can be shown38 that Eq.
�40� reproduces the static RPA scheme and the phase dia-
gram of Sec. IV. Evidently the terms in Fig. 10 are essential
to obtain magnetism since they are the only ones that are
able to describe collective phenomena. On the other hand,
the remaining terms in Fig. 8 are only corrections that do not
modify the phase diagram qualitatively.

B. Dynamic FRG

The considerations in Sec. V B led to the conclusion that
a static approximation of the FRG equations does not allow
to calculate the central quantity governing the destruction of
long-range order: the pseudofermion spectral width �. We
will now treat the FRG equations in its full complexity and
consider the dynamics with all frequency dependences as
well as the back coupling of the self-energy into the two-
particle vertex. This will lead to a finite spectral broadening
without further assumptions. Again we make use of the trun-
cation scheme that omits all vertices higher than the two-
particle vertex. Inserting Eqs. �31�, �32�, �35�, and �36� into
Eqs. �29� and �30�, after a lengthy but straightforward calcu-
lation we end up with the flow equations and initial condi-
tions presented in the Appendix. For convenience, we write
the two-particle vertex as a function of the invariant fre-
quency variables s, t, and u,

�s/d i1i2
� �1�,2�;1,2� → �s/d i1i2

� �s,t,u� , �41�

defined by s=1+2, t=1�−1, and u=1�−2. The ad-
vantage of this parametrization is that �s and �d are both
invariant under each of the transformations s→−s, t→−t,
and u→−u, which can be deduced by a careful examination
of the flow equations. This simplifies the numerics since only
positive s, t, and u have to be considered.

In order to solve these equations numerically, the continu-
ous frequencies will be discretized. We use a combination of
a linear and a logarithmic mesh. Since the two-particle ver-
tex depends on three frequencies, the computational effort
grows with the third power of the number of discrete fre-
quencies. Regarding the truncation in real space, the comput-
ing time grows with the fourth power of the length of the
longest two-particle vertex 	in two dimensions, counting an
internal site summation, see Eqs. �A2� and �A3�
.

From the numerical solution, we obtain physical quanti-
ties such as the static correlation function �ij�i�=0� by con-
necting the fermion lines of the two-particle vertex,

χij(iν = 0) =

∫ ∞

0

dτ
〈
Tτ

{
Sz

i (τ)Sz
j (0)

}〉

= δij
i =0νji +

� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �

i =0νi j

�42�
To calculate this diagram two frequency integrals have to be
performed numerically. The physical correlation function is
recovered in the limit �=0 but we also consider �ij at finite
�. Transforming �ij

� into momentum space, we obtain the
magnetic susceptibility ���p�. The results are plotted in
Figs. 11 and 12. It is seen that during the flow the Néelsus-
ceptibility 	p= �� ,��
 exhibits a divergence for all g�0.55.
On the other hand, the Collinear susceptibility appears to
diverge for all g�0.55. In particular, there is no parameter
region without a magnetic instability and with a flow down
to �=0. In the present approximation, the paramagnetic
phase is obviously missing. The abrupt stop of the flow of
the susceptibilities for g�0.6 in Fig. 11 and g�0.55 in Fig.
12 can be traced to the divergence of the respective other
susceptibility. For g at the transition, i.e., between 0.55 and
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FIG. 10. FRG equation for the RPA scheme. The lines inside the
boxes indicate the connections of the external legs.
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0.6, the divergence is clearly indicated at the smallest acces-
sible �.

The absence of a nonmagnetic phase is quite unsatisfac-
tory. Obviously the spectral width comes out too small in this
approximation. However, an essential improvement is made
in the next section where we use a different truncation
scheme.

C. Katanin truncation

The only approximation that is involved in the FRG
scheme described above is the truncation procedure in the
hierarchy of differential equations. Unfortunately, the simple
truncation employed above violates conservation laws, ex-
pressed in terms of Ward identities. In order to improve the
fulfillment of Ward identities, Katanin developed a one-
particle self-consistent version of the two-loop FRG
equations.37 The basic modification there is the substitution
of the single-scale propagator S�, see Eq. �32�, by the total
derivative of −G� with respect to �,

S��i� → −
d

d�
G��i� = S��i� − 	G��i�
2 d

d�
���i� .

�43�

It can be shown37,38 that such an approach is equivalent to an
RPA+Hartree approximation if only terms of the RPA type
�Fig. 10� are kept in the flow equation for the two-particle
vertex. In this case, Ward identities generated by spin con-
servation are fulfilled exactly. As an application in a different
context, for the reduced BCS model of superconductors ex-
act mean-field results have been reproduced.38 In particular,
in conjunction with a small symmetry-breaking external field
this scheme allows to access symmetry-broken phases.38,69,70

If one keeps the terms additional to RPA on the right-hand
side of the second flow equation �see Fig. 8 and also Ref.
60�, as we do, the exact conservation property is lost but the
remaining symmetry violating terms are generated by over-
lapping loop diagrams and may be expected to be smaller
�see Ref. 37�. While on the one hand, the Katanin truncation
scheme assures that the terms of an RPA+Hartree resumma-
tion are correctly included, we find that the non-RPA terms
are essential in providing just the right size of a finite
auxiliary-particle spectral linewidth. In that sense, the non-
RPA terms play a crucial role here: they control the pseudo-
fermion damping and therefore the size of the nonmagnetic
region in the phase diagram.

As described in Ref. 38 the substitution 	Eq. �43�
 is made
in Eq. �30� but not in the equation, for the self-energy, Eq.
�29�. In the present work, the above-mentioned small
symmetry-breaking field is not applied. This would break the
invariance of the two-particle vertex under s→−s, t→−t,
and u→−u and would generate additional terms in the spin
parametrization 	Eq. �35�
. Effectively, with the substitution
	Eq. �43�
 also contributions from the three-particle vertex
are included. In the numerical implementation, in the equa-
tions for the two-particle vertex the internal bubble Pcon

� , Eq.
�A5�, is replaced by the modified bubble PKat

� , Eq. �A6�. Due
to the last term in Eq. �A6� which does not contain a �
function, the internal frequency integration has to be per-

formed explicitly. As a result, now the computing time grows
with the fourth power of the number of discrete frequencies.

Typically we use 64 frequencies and discard all two-
particle vertices with a spatial extent larger than seven lattice
spacings in each direction. Note that this truncation corre-
sponds to a system with 14�14 sites and periodic boundary
conditions because the longest bond in such a system extends
over 7�7 sites. Exploiting lattice symmetries we end up
with approximately 2.5·106 coupled differential equations.
The numerically determined coupling functions and self-
energies are inserted into Eq. �42� to calculate the suscepti-
bilities shown in Fig. 13. In the course of the flow, the Néel
susceptibility for g=0.2 shows a pronounced increase while
the Collinear one stays very small, see Fig. 13�a�. Obviously
at that degree of frustration, the system is in the Néel phase.
However, we do not observe a real divergence of the suscep-
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FIG. 13. �Color online� Flow of the static susceptibility for the
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�a� g=0.2, �b� g=0.55, and �c� g=0.8.
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tibility. When � gets too small, the increase in the suscepti-
bility stops and the flow exhibits an unstable and wiggly
behavior which we attribute to numerical instabilities. Espe-
cially, for small �, the flow is sensitive to the discretization
of the frequencies. Going to larger system sizes, the situation
improves, i.e., one can follow the flow to larger susceptibili-
ties and finds a steeper increase. Thus, unstable flows at
small � can be identified as finite-size effects. In the thermo-
dynamic limit and with a sufficient number of discrete fre-
quencies, we expect a smooth, diverging solution indicating
a magnetic instability.

At g=0.55, see Fig. 13�b�, both susceptibilities approach
finite values for �→0, demonstrating the existence of a
phase with neither Néel nor Collinear long-range order.
Small oscillations are a consequence of the frequency mesh.
In our numerics, the limit �=0 cannot be reached exactly
because of an insufficient number of discrete frequencies at
very low-energy scales. Typically the flow is stopped at �
�0.01 J1 but can be easily extrapolated to �=0. Finally at
g=0.8 the Collinear phase can be identified. In Fig. 13�c�,
the behavior is analogous to Fig. 13�a� but showing an in-
creasing Collinear susceptibility.

In order to investigate the properties of this phase further,
we calculated the susceptibilities at additional parameter val-
ues. The results in the physical limit �=0 are shown in Fig.
14. Deep inside the paramagnetic phase our results are well
converged. With increasing g, we observe a decreasing Néel
susceptibility and an increasing Collinear susceptibility. The
point where Néel-type fluctuations loose out compared to
Collinear fluctuations lies at g�0.6 in correspondence with
the results in Sec. V A, i.e., clearly higher than the classical
value g=0.5. At the phase boundary to Collinear order,
which turns out to be in the range gc2�0.66. . .0.68, the criti-
cal fluctuations require large system sizes, in order to obtain
well-converged results. Here a finite-size scaling �see thin
lines in Fig. 14� considerably enhances the Collinear suscep-
tibility and a beginning divergence is visible. The situation is
very different near the phase boundary to Néel order. A di-
vergence of the Néel susceptibility is not seen and finite-size
effects play a minor role. Instead, here the flow is highly

sensitive to the frequency discretization, which causes large
oscillations. Therefore, it seems to be difficult to access this
critical region and to obtain reliable data, see the dotted part
of the blue line in Fig. 14. Here a denser mesh enhances and
smooths the Néel susceptibility during the flow. An estima-
tion of this phase boundary leads to the parameter region
gc1�0.4. . .0.45.

Only few results on spin susceptibilities are found in the
literature.18 To the best of our knowledge, so far no data are
available for static spin susceptibilities. We note that our re-
sults on the phase boundaries are in good agreement with
previous results.18,20,21,28,44,46

So far we notice that the behavior of the system near the
two transitions is very different. To draw a conclusion con-
cerning the order of the transitions, a closer investigation
taking into account a flowing order parameter is necessary.

Although the tendency toward formation of Néel and Col-
linear phases has already been seen in the standard truncation
of the previous section, the inclusion of certain higher-order
terms turns out to be essential. As shown above, the non-
RPA-like terms in conjunction with the Katanin truncation
indeed lead to a damping ���� which is strong enough to
generate a nonmagnetic phase. The damping which is related
to the self-energy via Eq. �36� is no physical observable. This
quantity is obtained from the first flow equation and can be
compared with the frequency independent � used in the phe-
nomenological theory from Sec. IV, see Fig. 15. At g=0.55,
i.e., in the nonmagnetic region we find that ��=0�� com-
pares quite well with the choice �̃=0.36 in Eq. �19� at rel-
evant energy scales �J. In the region with high frustration,
g�0.55, the static two-particle vertex �s i1i2

� �s=0, t=0,u
=0�, where i1 and i2 are nearest neighbors and using the
initial conditions given by Eq. �A7�, comes out as
�s i1i2
�=0 �0,0 ,0��1.8 J1 at the end of the flow.

D. Columnar dimer and plaquette order

In this section, we discuss the nature of the paramagnetic
phase and investigate whether there is still some kind of
long-range order. Possible states currently under discussion
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FIG. 14. �Color online� Static susceptibility for the paramag-
netic phase in the physical limit �=0. The thick lines are obtained
by a finite-size scaling. The thin lines are the results for a maximal
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are a spin-liquid state �which does not break any symmetries�
and a VBS state. For the VBS, two dimerization patterns are
of special interest. In a columnar dimer arrangement transla-
tion invariance along one lattice direction as well as rotation
symmetry are broken. For a plaquette valence-bond ordering,
translation symmetry in both directions is broken while the
rotation symmetry is intact.

In order to probe the paramagnetic phase with respect to
these states, we add a small perturbation field to the Hamil-
tonian and investigate the response to it.19–21,23,28,29,47 In the
context of FRG, this concept has already been applied in
Refs. 38 and 69. The fields can be chosen as

Fd = ��
i,j

�− 1�iSi,jSi+1,j ,

Fp = ��
i,j

	�− 1�iSi,jSi+1,j + �− 1� jSi,jSi,j+1
 , �44�

for the columnar dimer and plaquette orders, respectively.
Here i and j are components of the position vector and � is
an energy much smaller than J1 and J2. Note that the expec-
tation values �Fd� and �Fp� are the order parameters of these
states. Fd �see Refs. 19–21, 23, 28, 29, and 47� and Fp �see
Refs. 20 and 21� break the above-mentioned lattice symme-
tries and generate the two dimerization patterns shown in
Fig. 16. Possible instabilities should be visible as diver-
gences in the corresponding equal time-correlation functions
�d/p=

d�Fd/p�
d� �=0.

The coupling to these operators is included in the FRG
formalism by modifying the initial conditions. The bare in-
teractions in the limit �→� are slightly strengthened or
weakened according to the dimerization patterns. Further-
more, we have to take into account that due to the broken
translation symmetries a two-particle vertex is no longer
uniquely determined by one lattice vector. In the course of
the flow, we calculate the correlations of strengthened and
weakened bonds and its relative difference. We define equal-
time dimer and plaquette correlation functions by

�d/p
� =

J1

�

���Si,j,Si+1,j��d/p
� − ��Si+1,j,Si+2,j��d/p

� �
���Si,j,Si+1,j��d/p

� + ��Si+1,j,Si+2,j��d/p
� �

. �45�

Here the index d/p indicates that the correlator ��¯ �� is cal-
culated with the Hamiltonian H+Fd/p. The factor � in the
denominator eliminates the dependence on the strength of
the perturbation such that �d/p

� start with the initial value

�d/p
�=�=1. An increase �decrease� during the flow shows that

the system supports �rejects� the perturbation. Note that we
again apply Katanin’s truncation scheme.

The columnar dimer correlation �d
� is plotted in Fig. 17. It

is seen that this quantity increases considerably during the
flow. In the limit �=0, the perturbation is enhanced by a
factor of �3.8 but a divergence does not occur. We do not
exclude an instability for this kind of order which might be
masked here due to finite-size effects. Remarkably we obtain
plaquette correlations �p

� with the same strength. Apparently
the FRG scheme is not able to distinguish between dimer and
plaquette correlations. This might be a consequence of the
fact that the four-particle vertex from which such suscepti-
bilities can be calculated directly, is not included in our FRG
equations. The oscillations during the flow are again a con-
sequence of the frequency mesh.

Thus, our results favor a spin liquid with enhanced equal
time correlations �d, �p or a VBS with one of the two ar-
rangements. Previous papers mainly calculated the columnar
dimer and plaquette susceptibilities in the magnetically or-
dered phases rather than in the paramagnetic phase.19,20,28,29

VI. SUMMARY

The aim of this work is the development of new methods
and the calculation of properties for frustrated quantum spin
models. We focused on the spin-1/2 J1-J2 Heisenberg anti-
ferromagnet on the square lattice but our method is generally
applicable to models of that type. Starting point of our ap-
proach is perturbation theory in the exchange couplings,
summed to infinite order. In order to be able to use standard
many-body techniques and to perform diagrammatic expan-
sions, we applied the auxiliary-fermion representation of
spin operators. To enforce the auxiliary-particle constraint,
two different projection schemes have been employed: �1�
enforcement of the constraint on the average �which, how-
ever, becomes exact at zero temperature� and �2� exact pro-
jection using an imaginary chemical potential.54

In a first exploratory study, we use the RPA+Hartree ap-
proximation to access the ground-state properties. Since the
straightforward mean-field approach is not able to describe

(a) (b)

FIG. 16. �Color online� Patterns for �a� columnar dimerization
and �b� plaquette dimerization. The two types of bonds correspond
to strengthened and weakened interactions in the Hamiltonian H
+Fd or H+Fp.
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the suppression of magnetic order near g=
J2

J1
=0.5, we intro-

duce a damping term in the bare pseudofermion Green’s
function. This phenomenological self-energy accounts for
scattering processes of the auxiliary fermions which lead to a
finite lifetime and a spectral broadening. We show that the
damping reduces the magnetic order especially in the regime
of strong frustration. For sufficiently large damping, one
finds a paramagnetic phase around g=

J2

J1
=0.5, as seen in nu-

merical studies �we term this phase paramagnetic although it
may possess more complex magnetic correlations�. Further-
more, using RPA, we calculate the magnetic susceptibility
and the spin correlations in the nonmagnetic phase. We ob-
serve critical behavior at the phase boundaries, i.e., a diver-
gent susceptibility and correlation length. Within this
method, the basic properties come out qualitatively well but
a microscopic derivation of the pseudofermion damping is
beyond the reach of simple diagrammatic resummations.

A more systematic approach is considered in the main
part of the paper: the FRG method. We employ its formula-
tion in terms of the one-particle irreducible vertex functions
and use a sharp frequency cutoff �. This method sums up
large diagram classes in a systematic way, e.g., the two-
particle vertex function in the particle-particle channel and in
two particle-hole channels and reaches therefore far beyond
the mean-field theory. Self-energy contributions are taken
into account on equal footing with the vertex renormaliza-
tions.

First we apply the conventional truncation scheme to the
hierarchy of FRG differential equations, neglecting all verti-
ces higher than the two-particle vertex. Further imposing the
static approximation, we find that the pseudofermion broad-
ening is not generated in this way. Adding a phenomenologi-
cal broadening, the results of the phenomenological theory
are recovered, which is saying that RPA-like diagrams in the
particle-hole channel can be identified as the most important
contributions. Including the frequency dependencies of the
self-energy and the two-particle vertex, we find magnetic
instabilities in the whole parameter range. The latter is sig-
naled by an immanent divergence of the susceptibilities at
p= �� ,�� and/or p= �� ,0� in the course of the flow toward
�=0. It thus turns out that the truncation scheme is insuffi-
cient to generate a strong pseudofermion damping and a non-
magnetic phase. This can be traced to the violation of Ward
identities in this approximation.

An improved approximation including self-energy effects
in the single-scale propagator has been suggested by
Katanin.37 There the single-scale propagator is replaced by
the total derivative of the Green’s function with respect to �.
We find that the latter approach, even if only implemented on
the one-loop level, reproduces features of the mean-field
theory and fulfills the Ward identities exactly, if the RPA-like
contributions in the particle-hole channel are considered
only.37,38 In our calculations, we include the additional terms
on the right side of the equation for the two-particle vertex in
Fig. 8. Calculating the susceptibility, we are now able to
distinguish between the three phases. In particular, we get a
convergent flow down to �=0 in the region where the para-
magnetic phase is expected. The phase boundary between
Néel-order and paramagnetic phases is found to be at gc1

�0.4. . .0.45 and the transition from paramagnetism to Col-
linear order happens at gc2�0.66. . .0.68. Our findings agree
well with the results obtained by other methods.18,20,21,28,44,46

Approaching the transition to Collinear order, we observe a
smooth divergence of the corresponding susceptibility. On
the other hand, near the transition to Néel order a different
picture emerges. Here it is difficult to access the critical re-
gion because the discretization of the frequencies generates
large oscillations in the flow at small �.

Finally we probed the nonmagnetic phase with respect to
columnar dimerization and plaquette order by investigating
the flow in the presence of appropriate small perturbative
fields. In the limit �=0, the correlations for both types of
order are enhanced but a divergence is not found. These re-
sults indicate either strong dimer and plaquette fluctuations
in a spin-liquid phase or a symmetry-broken phase with
dimer or plaquette order.

The work reported here shows that in spite of the fact that
quantum spin models are in the strong-coupling regime by
definition, partial resummations of perturbation theory ap-
pear to capture the physics of frustrated magnets at least on a
qualitative level. The resummations, done here in the frame-
work of the functional renormalization-group method, ac-
count in a controlled and systematic way for all two-particle
interaction processes, including all couplings between the
different channels. If self-energy corrections are added in a
consistent way, thereby including certain contributions of the
three-particle vertex, it appears to be possible to calculate the
central quantity of frustrated spin systems in the language of
pseudoparticles, the damping of the pseudofermions in a
controlled way. The systems we consider are, in principle,
infinitely large but the spin correlations are only treated up to
some finite length. Hence we do not have to deal with the
effects of edges or periodic boundary conditions. However,
the range over which our correlations extend typically in-
clude more than 200 sites which is much more than the sys-
tem sizes accessible by exact diagonalization. Furthermore,
we do not make any assumption on the ground state or per-
form an expansion around any presumed state. Our starting
point of free fermions without dispersion is completely fea-
tureless. Therefore, our approach is straightforwardly appli-
cable to a variety of models. Some obvious extensions of the
present work are �1� consideration of other models such as
the spin-1/2 J1-J2-J3 Heisenberg antiferromagnet on the
square lattice or geometrically frustrated models like the tri-
angular or Kagome lattice, �2� generalization to finite tem-
perature, and �3� calculation of dynamical spin-correlation
functions. Work in this direction is in progress.

ACKNOWLEDGMENTS

We thank W. Brenig, R. Thomale, H. Schmidt, M. Salm-
hofer, and S. Andergassen for stimulating discussions. Finan-
cial support by the Deutsche Forschungsgemeinschaft
through the Forschergruppe FOR 960 is gratefully acknowl-
edged.

APPENDIX: FRG EQUATIONS WITH FULL DYNAMICS

In this appendix, we show the flow equations for �, �s,
and �d with all frequency dependences,
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Note that the frequency parametrization of Eq. �41� is used
for �s and �d. The frequencies 1�, 2�, 1, and 2 on the
right side stand for the inverse transformations

1� =
1

2
�s + t + u�, 2� =

1

2
�s − t − u� ,

1 =
1

2
�s − t + u�, 2 =

1

2
�s + t − u� . �A4�

P��1 ,2� denotes a bubble of S� and G�. For the conven-
tional truncation as discussed in Sec. V B, one gets

P��1,2� → Pcon
� �1,2� =

��1 − ��
1 + ���1�

��2 − ��
2 + ���2�

. �A5�

In this scheme, the internal integration �d�. . . simplifies to
��=��. . .. For the Katanin truncation considered in Sec.
V C, we get a more complicated expression,

P��1,2� → PKat
� �1,2� =

��1 − ��
1 + ���1�

��2 − ��
2 + ���2�

+ � d

d�
���1�� ��1 − ��

�1 + ���1��2

��2 − ��
2 + ���2�

.

�A6�

In both cases, P��1 ,2� is an odd function separately in 1
and 2. Finally from the comparison between Eqs. �34� and
�35�, we get the following initial conditions:

��=��� = 0,

�s i1i2
�=��s,t,u� = 1

4Ji1i2
, �d i1i2

�=� �s,t,u� = 0. �A.7�
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